
Measuring Methods of Solving the NYT Spelling Bee

Rowan Hennessy

Abstract

An informal personal project exploring the properties of the New York Times game Spelling

Bee. In this paper, our goal is to find patterns or distributions of solutions to the game, explore
different methods of “solving” the puzzle, given different win conditions, and generally learn as
much as possible about the application of algorithms to an inherently human game.

1 Introduction

Recently, I came across a video by 3Blue1Brown about solving Wordle using Information Theory, and
I thought it would be interesting to explore methods of solving a different New York Times game- the
Spelling Bee. Unlike Wordle, there is no information “missing” at any stage of the game. Rather, the
user is given a “hive” of characters, and is tasked with combining the middle character with any subset
of the other characters to create as many words as possible.

The difference between efficient algorithms to solve this problem compared to a network flow or
stable matching problem interested me, as we have specific bounds on n, and I thought looking deeper
into this problem would be a good opportunity to practice Python, as well as see if there was anything
interesting hidden in this simple game.

This paper began as simply examining how a few solving methods would measure against each
other, seeking a single most-efficient implementation to solve the problem. While looking for ways to
optimize solving the problem, however, I found analysis of the game itself interesting, which gave rise
to section 3.

2 From Online Game to Programming

2.1 Game Explanation and Formalizing

If you’re unfamiliar with the New York Times’ Spelling Bee puzzle, the rules are quite simple. Opening
the link displays something similar to Figure 1 below, with six outer characters and one highlighted
inner character.

Figure 1:
The opening screen of Spelling Bee

The user inputs a word made of any combination of these characters, and if that word is valid,
they are awarded the appropriate amount of points. A word ω is deemed valid if it has the following

1

properties:

1. The inner character of the hive is contained in ω

2. The length of ω is greater than 3, less than 20

3. ω is not obscure, hyphenated, a proper noun, or an expletive

Upon entering a valid word ω, the user’s total score is increased by f(ω) points, where f is the following
function:

A = {ω | ω is a valid word and contains every character in the hive} (1)

f(ω) =

1 if len(ω) = 4

len(ω) if len(ω) > 4 and ω /∈ A

len(ω) + 7 if len(ω) > 4 and ω ∈ A

(2)

Note that A represents the set of “pangrams”, which are valid words that contain every character in
the hive. It’s given to us that each puzzle contains at least one pangram, which are worth an additional
7 points. Clearly, every valid word is either a pangram or not, and so any valid word ω has a (not
necessarily distinct) point value f(ω).

The user’s goal is to climb the “rankings”, the boundaries of which are determined by a “percentage
of possible points in a puzzle”. The rankings, and the respective percent of total points necessary to
achieve said rankings, are in Table 1, below. In the game, these percentages are rounded, and we will
use the same metric moving forward.

Rank % Necessary
Beginner 0
Good Start 2
Moving UP 5
Good 8
Solid 15
Nice 25
Great 40
Amazing 50
Genius 70
Queen Bee 100

Table 1: Rankings and Percentage of Total Points Necessary to Achieve Them

It’s important to note the user does not have direct access to the amount of “possible points in a
puzzle”, but they do have access to the points necessary to reach each rank. Additionally, the “Queen
Bee” rank is hidden from the user, and requires entering every word in the solution set.

The most obvious win condition, and the one used by most users, is reaching the “Genius” rank,
requiring the user to get approximately 70% of the total possible points. With that being said, we’ll
define the user having “won” the game as when their set of input words Ω = {ω1, ..., ωn} has the
following property:

n∑
i=1

f(ωi) ≥ 0.7 ·K (3)

where K is the maximum number of points possible.
As an aside, I have never achieved the “Genius” rank independent of any help, and Professor

Steven Strogatz of Cornell University jokingly told New York Times he gets to the genius level “right
away”, before letting his family mop up the easy words so he can gracefully come in last. Anecdotally,
my experience has been that unlike Wordle, the Spelling Bee is a game where most users do not “win”,
under our win condition, but with Spelling Bee hidden behind a paywall, there’s a distinct lack of data
on that front.

With the game formalized, we now transition to the initial programming necessary to implement
it.

2

https://www.nytimes.com/2022/01/28/nyregion/steven-strogatz-sundays.html
https://www.nytimes.com/2022/01/28/nyregion/steven-strogatz-sundays.html

2.2 Transferring the Game to Code

Unlike the New York Times, we’re uninterested in designing a minimalist GUI for a user to play on, so
the following programs will exclusively focus on implementing the game for different solving methods
to use.

The Spelling Bee is difficult to “create” valid datasets of; see this MATLAB post for the complexity
of algorithmically “creating” Spelling Bees. Additionally, with valid words words being described as
“not obscure”, there’s still a bit of formalization missing. Is the Scrabble dictionary used? What
makes a word “obscure” or not? While we will eventually create our own Spelling Bees in section 3.2,
there are faults to doing so, and it’s important to have an objective source of data directly from the
website.

Luckily, the source code of the Spelling Bee contains two weeks’ worth of Spelling Bees, including
each day’s center letter, outer letters, pangrams, and valid answers. So, with some quick scraping,
we’re able to create two csv files, data.csv and solutions.csv, where

datai,0 = day i’s central character

datai,j = day i’s jth outer character, 1 ≤ j ≤ 6

solutionsi,j = day i’s jth solution

To prevent algorithms from having benefits by sorting the solutions by length, we leave them in the
psuedo-random order presented in the source code. This way, an algorithm that solves beginning
with lower-length words is equally encumbered by searching solutions.csv as one that begins with
higher-length words.

Now, we have 14 Spelling Bee data sets. This is, admittedly, a low number of data sets, but given
this paper is meant to be an exploration rather than any formal writeup, we’ll assume that’s enough
for testing.

All that’s left to make the game playable by any search algorithm is to write the rules of the game.
We do so in game.py, with the psuedocode:

def count_total_points(solution_list):

possible_points = 0

for i in solution_list:

if length(i) == 4:

possible_points += 1

else:

possible_points += length(i)

if i is a pangram:

possible_points += 7

return possible_points

def get_rank_points(total_possible):

rank_percentages = [0, 0.02, 0.05, 0.08, 0.15, 0.25, 0.40, 0.50, 0.70, 1]

return [x * total_possible for x in rank_percentages]

note precondition of word being valid

def get_word_points(word):

points = 0

if length(word) == 4:

return 1

else:

if word is a pangram:

return 7 + length(word)

return length(word)

def get_alg_solutions(alg, chars, soln, max_rank, *optional params):

* Calculate amount of time it takes algorithm alg to complete

each rank 0,...,max_rank independently, for characters chars*

out: words_result, points_result, times_result

3

https://blogs.mathworks.com/community/2023/04/06/an-algorithmic-spelling-bee/

get alg solutions is intentionally left general for now, and will be specified in more concrete terms
later. Important structural information is that:

words result = [0,W1, ...,Wmax−rank]

points result = [0, P1,, Pmax−rank]

times result = [0, T1, ..., Tmax−rank]

where Wi is the list of words algorithm alg used to reach rank i, Pi is the number of points algorithm
alg achieved that “crossed” the boundary from rank i − 1 to i, and Ti is the amount of time it took
algorithm alg to reach rank i.

An important note is that the get alg solutions computes each rank independently. That is,
Wi ∈ Wi+1 is not given, and Ti−1 = n and Ti+1 = m does not imply Ti = m − n. This was done for
two reasons: With a lack of data sets, increasing randomness for each rank gives us a better picture, and
with “Genius” rank not being the common human win condition, it allows us to examine algorithms
under different win conditions. For instance, an algorithm A may have better results for lower win
conditions than algorithm B, but better for higher win conditions, and allowing independence lets us
examine each separately.

Now that our game rules are set up, we begin examining the information in data.csv and solutions.csv
to see if we can gain information to use in our solving.

3 Data Analysis

An important step before writing algorithms is to do some analysis of the data. Below, we first
examine the distribution of potential solutions’ by length, and then by points earned. Analysis of
these properties will help us write better algorithms, as well as give better results when analyzing the
algorithms themselves.

3.1 Building a Dictionary of Spelling Bee Words

Unlike typical algorithms, we have a clear upper bound on the length of possible solution words ω ∈ C,
that being n < 20. Intuitively, it seems like we can improve this bound. With all potential solution
words having a maximum of 7 unique characters, it seems unlikely for many, or any, solution words
to have a length of 19. Since we’re interested in possible distributions of points as well, it’s probably
a good idea to examine specifically pangram lengths as well.

We’ll first do a quick sanity check on our given solutions in solutions.csv, to get an idea if there
could be any underlying distribution. In Figure 2, we see the solution words from the past two weeks
of spelling bees appear to follow an exponential distribution! So, we’ll continue with our analysis.

Figure 2: PDF and CDF of Given Solutions by Length

4

Word Length n P̃[len(a) = n] P̃[len(a) ≤ n] P̃[a is pangram|len(a) = n]
4 0.341256 0.341256 0.000000
5 0.227504 0.568761 0.000000
6 0.174873 0.743633 0.000000
7 0.130730 0.874363 0.103896
8 0.071307 0.945671 0.142857
9 0.027165 0.972835 0.312500
10 0.016978 0.989813 0.600000
11 0.003396 0.993209 0.500000
12 0.005093 0.998302 0.666667
13 0.001698 1.000000 0.000000

{14, ..., 19} 0.000000 1.000000 0.000000

Table 2: Figure 2 in table format

Using an English text dictionary that has been curated to contain over 100K words that could
follow our limitations for some Spelling Bee and repeating the process, we see quite a different result,
pictured in Figure 3:

Figure 3: Dictionary Potential Solutions PDF and CDF

5

Word Length n P[len(a) = n] P[len(a) ≤ n] P[a is pangram|len(a) = n]
4 0.041383 0.041383 0.000000
5 0.083197 0.124580 0.000000
6 0.167370 0.291950 0.000000
7 0.219048 0.510998 0.309181
8 0.212973 0.723971 0.516349
9 0.141887 0.865858 0.675501
10 0.079358 0.945216 0.748677
11 0.034468 0.979684 0.822613
12 0.013635 0.993319 0.819484
13 0.004551 0.997871 0.884120
14 0.001543 0.999414 0.873418
15 0.000400 0.999814 0.878049
16 0.000127 0.999941 0.923077
17 0.000039 0.999980 0.750000
18 0.000010 0.999990 1.000000
19 0.000010 1.000000 1.000000

Table 3: Figure 3 in table form

What could lead to such severely different distributions? The most likely answer is the informal
“obscurity” filter. In our dictionary, we have words like “zugzwang”, which is a word, but isn’t one
an average human is likely to recognize. We’ll attempt to find some level of “obscurity” that gives us
more similarity.

Notice that the ratio of pangrams is significantly higher in our dictionary, and recognizing that
any pangram defines 7 Spelling Bee games. Using this, and the assumption that Spelling Bee games
are intended to be fun and knowing they ideally have around 30− 45 (from a Q & A session with the
creator) solution words, we’ll apply the following filter: Remove any words that are (1) Are pangrams
with less than 2 or more than 3 vowels, or (2) Require such pangrams. These assumption holds for
our given solutions, and eliminates a relatively minute amount of our dataset.

Next, we’ll apply a filter directly based on the “obscurity” of words. Using the https://phrontistery.info/,
we use the ratio of “true” solution words to all solution words, and filter our dictionary using this as
the assumed probability of a word in the obscure dictionary being in a solution set.

Finally, we apply a filter using words.words() from nltk.corpus’ words corpus, as well as abusing
PyEnchant’s spellcheck function. We find the number of “true” solution words that are in neither
corpus, as well as only one or the other, and use those as the assumed probabilities of a word in our
dictionary being deemed unobscure.

Both of the filters above reduce our dictionary size heavily, and eyeballing the results seem to
indicate a reasonable level of obscurity. Moreover, our dictionary still contains the words necessary to
solve our objective data.csv games, a good test set to ensure we haven’t filtered too far.

The distribution that follows looks similar (seen in Figure 4 below), but we’ll see later how this has
given us a good dictionary.

6

https://www.nytimes.com/2022/08/14/briefing/spelling-bee-questions-and-answers.html
https://www.nytimes.com/2022/08/14/briefing/spelling-bee-questions-and-answers.html

Figure 4: Filtered Dictionary Distributions

3.2 Distribution of Potential Solution Points

From above, we know that the vast majority of potential solution words are of lower relative length.
However, winning our game requires earning a certain percentage of total possible points. So, simply
guessing all the small valid combinations of characters may not be the globally best solution possible.
So, similarly to above, we begin by analyzing just solutions.csv, and potentially extending.

Examining the total potential points of each game in solutions.csv using our count total points

function, we have a minimum of 89 potential points, and a maximum of 348 points. This difference is
large enough to demand further analysis, as intuition suggested. The histogram of this data is seen in
Figure 5, below:

Figure 5: Histogram of Potential Points from solutions.csv

3.2.1 Attempting to Filter Potential Solutions (unhelpful results)

To get a more general histogram, we want to somehow create a large set of possible Spelling Bees.
We’ll begin unconcerned about the viability of these Spelling Bees, for now, and change our approach if
difficulty arises. We first note that given a 7-tuple of characters (c0, ..., c6), the only order that matters
is c0, i.e. (c0, c1, .., c6) = (c0, c6, ..., c1), but neither are equivalent to (c1, c0, ..., c6). To find all unique
combinations of the alphabet following this, we fix a first character c0, and consider all subsets, size

7

six, of the remaining 25 letters. This gives us

26 ·
(
25

6

)
= 26 · 25!

6!(25− 6)!

= 26 · 25 · 24 · 23 · 22 · 21 · 20
6 · 5 · 4 · 3 · 2

= 26 · 5 · 23 · 22 · 7 · 10
= 4, 604, 600

total combinations. With our end goal being a series of computations on each combination, this is an
unreasonable amount. To reduce this to a more reasonable size, we’ll make a few (trivially reasonable)
assumptions about any given Spelling Bee, based on data.csv. First note the frequency graph of
letters in data.csv in Figure 6, below.

Figure 6: Frequency Map of data.csv, including frequency of being center character

1. There must be at least two vowels, not including y. This assumption holds for data.csv, and is
in spirit of the Spelling Bee being a relatively easy game.

2. Similarly, there must be no more than three vowels, this time including y. This assumption also
holds for data.csv

3. The overall frequency of any character ci across multiple Spelling Bees follows some distribution
sharing characteristics to the relative frequency of characters in the English Language.

Assumptions (1) and (2) are both obvious filters to apply, considering the nature of the Spelling Bee
game- English words containing no vowels are primarily “obscure”, with some examples being “crwth,
cwm, and pfft”. Similar logic holds for the number of vowels, and with data.csv following these
conventions for all entries, these assumptions can be taken as relatively safe.

Assumption (3) is made by examining the frequency map of characters in data.csv. Assuming the
distribution of characters were uniform and independent across days gives us the following probability
of any one character not being in one puzzle:

P[ai /∈ c] =

(
25
6

)
+ (25 ·

(
24
5

)
)

26 ·
(
25
6

)
=

7

26

8

from there being
(
25
6

)
combinations where ai is first, and 25 ·

(
24
5

)
where ai is not first. Using our

assumption of independence across days, this gives the probability for any letter ai to not be among
14 puzzles as

P[ai /∈ c14] = (P[ai /∈ c])14

= 1.0513× 10−8

an astronomically small number. In our sample data.csv, there are five letters not appearing once:
[j, k, q, s, z] four of which are in the minimum five relative frequency letters [z, q, j, x, k]. The final
missing letter, s, is actually deliberately missing- the editor of Spelling Bee, Sam Ezersky, said on a
NYT Q&A in 2021 that he purposefully keeps s from being a character because “if every other word
is a plural, it can make for tedious solving”. Thus, our third assumption leads to eliminating s from
our alphabet entirely.

This is a tremendous result! Not only does it reduce our entire alphabet moving forward by a letter,
which will be important for our solving algorithms, but also reduces our set of “possible spelling bees”
by a large amount. Going back to our discussion of the number of unique Spelling Bees, but now with
s removed from the alphabet:

25 ·
(
24

6

)
= 25 · 24!

6!(18!)

= 25 · 24 · 23 · 22 · 21 · 20 · 19
6 · 5 · 4 · 3 · 2

= 25 · 23 · 22 · 7 · 2 · 19
= 3, 364, 900

Next, we’ll apply our assumptions to reduce this number further. A combination of seven characters
contains less than 2 vowels if it contains exactly 1 vowel or exactly 0 vowels. A combination can contain
exactly 1 vowel two ways: (1) the first character is a vowel, or (2) the first character is a consonant
and there is one vowel in the rest. So, we can express the number of combinations containing exactly
1 vowel as A + B, where A = 5 ·

(
20
6

)
is the number of combinations with one of five vowels at the

beginning, and all consonants after, and B = 20 ·
(
19
5

)
· 5 is the number of combinations beginning

with a consonant, then 5 more consonants, then one of 5 vowels, since order of the final six characters
doesn’t matter. Next, the only way to express a combination containing zero vowels is to have 20 ·

(
19
6

)
,

with 20 possible consonants in first, and then the remaining 19 consonants comprising all remaining 6
characters.

With this in mind, the number of unique combinations following our rules (including removing s
from the alphabet) that break our assumption (1) is:

#(1) = 5 ·
(
20

6

)
+ 20 ·

(
19

5

)
· 5 + 20 ·

(
19

6

)
= 1, 899, 240

Next, we follow a similar procedure for the upper bound on number of vowels, but this time we do
consider y to be a vowel. With only 6 vowels, those being a, e, i, o, u, and y, we don’t need to consider
the case with 7 vowels, as that combination does not exist. Following the same logic as above, we find
the number of unique combinations following our rules that break our assumption (2) is:

#(2) = 6 ·
(
19

3

)
·
(
5

3

)
+ 19 ·

(
18

2

)
·
(
6

4

)
+ 6 ·

(
19

2

)
·
(
5

4

)
+

19 ·
(
18

1

)
·
(
6

5

)
+ 6 ·

(
19

1

)
·
(
5

5

)
+ 19 ·

(
18

0

)(
6

6

)
= 109, 516

So, after removing s from the alphabet, and applying assumptions (1) and (2), we have a remaining

3, 364, 900− 1, 899, 240− 109, 516 = 1, 356, 144

possible combinations. We’ve now reduced our original 4, 604, 600 combinations by a factor of over
70%, but this number of combinations is still not quite manageable. It’s possible that more filters
could reduce this to a manageable size, but further assumptions will bring us further from objective
data, so we label this sub(sub)section as a fun adventure in combinatorics and move on.

9

https://en.wikipedia.org/wiki/Letter_frequency
https://www.nytimes.com/2022/08/14/briefing/spelling-bee-questions-and-answers.html

3.2.2 Creating Bees as Sam Ezersky Intended

With the section above failing to reduce our set of possible combinations to a manageable size, we take
a different approach to build more Spelling Bees. To do so, we’ll use our final dictionary from 3.1, Sam
Ezersky’s method for building Spelling Bees, and remove games that violate a set of assumptions.

To begin, examine the distributions of both (1) The number of total solution words per game, and
(2) The number of total potential points, in data.csv by their number of total solution words, in
solutions.csv, seen in Figure 7 below:

Figure 7: Distributions of Solution Words and Potential Points in Objective Data

With this, as well as Sam Ezersky’s statement that he tries to hit a sweet spot of the number of
solution words being around 30 − 45, as well as never allowing more than 100 total, we begin, using
our final filtered dictionary from 3.1 as our corpus.

The benefit of beginning with a pangram and then moving to a potential Spelling Bee game instance
is twofold: The existence of at least one pangram in every Spelling Bee game plays an important role
in analyzing the point distribution of Spelling Bee games, and so guaranteeing a pangram’s existence
is important. Further, there are a significantly lower number of pangram’s than the 1, 356, 144
combinations we found above.

Pangrams are clearly not deterministic on the hive. That is, given a pangram p containing only
distinct characters c0, ..., c6, there are seven ways to create a “hive” with pangram p. These are simply
each permutation of the center character. Additionally, there may be multiple pangrams for a single
hive. With that being said, our approach for generating Spelling Bee game instances will be as follows:
Find a pangram p using our corpus, examine the general 7−tuple of characters generated by p. If the
general 7−tuple of characters has already been observed, we ignore p and move forward. Otherwise,
move forward using all seven possible Spelling Bee game instances that generate p.

Upon completion of this, we have a significantly larger dataset to examine, with the heavy caveat
that we generated this data. However, given the low amount of objective data from the NYT itself,
this is approximately the best we can do.

Next, we need to eliminate solution sets that are too far outside the norm of the Spelling Bee
game. We begin with the number of solution words: The game’s creator stated in the NYT Q& A
that he would “never offer puzzles” with 100 potential words, and that his golden zone is “between
30-45 words”. With such an explicit statement, we will remove any game instance with more than
60 solution words. As seen in Figure 8, below, this will decrease the amount of generated solutions
greatly, and will have a meaningful impact on our analysis.

10

https://www.nytimes.com/2022/08/14/briefing/spelling-bee-questions-and-answers.html
https://www.nytimes.com/2022/08/14/briefing/spelling-bee-questions-and-answers.html

Figure 8: Histograms of Generated Games by Number of Solution Words and Potential Points

Next, we look to eliminate those with too few potential solution words. In solutions.csv, the
minimum solution words is 21, then 24, then 34, so we’ll eliminate any generated Spelling Bee with
less than 20 solution words. Currently, the minimum is 2, which is clearly poorly fit to the real data.

With no further information on the methodology behind creating a legitimate Spelling Bee, we’ll
end our data-slashing here. Any matching of distributions between data.csv, solutions.csv and
generated bees.csv, generated bees solutions.csv could cause overfitting to our small objective
data, which would undermine this entire exercise. Below, we see our new distributions, in Figure 9

Figure 9: Fixed Spelling Bee Games Distributions

So what does this tell us? On the most basic level, we know now that for a solving method to
be considered “good”, solving Spelling Bees with total potential points around 175 is essential, which
may come at the cost of being slower on outlier potential points. With our win condition currently
being the “Genius” rank, winning Spelling Bees with 175 potential points would require 200 ·0.7 ≈ 123
words of length 4. Meanwhile, a single pangram is worth at least 14 points, an entire eighth of the
average potential points.

Examining the distributions of average % of points from words of each length, as well as for
individual words, we see the following distribution, pictured in Figure ??, below.

11

Figure 10: Avg. % of Potential Points Per Word Lengths

This shows us how effective methods of solving a Spelling Bee will prioritize words of length
5 ≤ n ≤ 8. Based on exclusively this distribution, the priority order should be 6 > 5 > 7 > 8, but
in practice the challenge of finding words of length 8 may outweigh the slight difference in average
percent of total points.

We also see that words of size 5 and above have a significantly larger individual impact on winning
the game than words of length 4. This result is to be expected, as the point function is discontinuous
from x = 4 to x = 5.

We complete our analysis of the words in the next section, summarizing our results and the conse-
quences.

3.3 Summary of Analysis and Consequences

In section 3.1, we examined the distribution of all potential solution words. Surprisingly, we found that
unlike our scraped data set, the larger set of potential solution words follows an approximately normal
distribution, with the positive skewness arising from potential solution words having a minimum length
of 4.

The following result of is that there is a relative zero number of potential solution words of length
greater than 17, and greater than 97% of potential solution words have length less than 11. Conse-
quently, when building solving methods moving forward, prioritizing solving lower-length words first
is most likely optimal, as the relative abundance of lower-length words outweighs the higher score of
longer-length words. This result is further extended later.

In 3.2, we examine points, rather than words. Despite the lack of direct results in 3.2.1, we learned
that s is never a character in the hive, center or otherwise. This is a very helpful piece of information
for building our solving methods later- eliminating s from any building method will help us find the
most efficient algorithm possible.

In ??, we generated our own Spelling Bees similarly to the creator of the game, using our dictionary
from 3.1 to try and avoid “obscure” words. After eliminating data that was clearly outside the bounds
of a normal Spelling Bee game, including removing s from any games, we found the distribution of
total potential points to be approximately normal, centered around ∼ 175. Next, we found the average
percent of total points generated by all words of each length, which gave more evidence to our “lower
(but not lowest) length words first” idea from 3.1. We found that, similar to our result from 3.1, not
only are all solution words of length 4 for a given game, on average, worth relatively less than the
same for lengths 5 ≤ n ≤ 8, but a single solution word of length 4 has relative worth of, on average,
only 20% of a single word of length 5.

As we move forward to building methods to solve a Spelling Bee instance, we’ll focus on applying
these results; namely:

12

1. Prioritize finding all words of length 5, 6, 7, and potentially 8, then work back to words of length
4

2. Ignore the letter s if iterating through all possibilities (and plurals)

3. Effective solving algorithms must work well when the total potential points are in [175, 200]

4. If close to winning, use the average individual percent of potential points to determine the
smallest word length that will most likely “win” the puzzle.

Now, we move on to two most obvious approaches for solving the puzzle.

4 Methods of Solving the Puzzle, and Problems Therein

In this section, we investigate using brute force and dictionary filtering to solve our problem. We’ll see
the benefits and drawbacks from each of these methods, which will help us in our final formulation of
an optimal algorithm.

We’ll restrict solving methods as follows: given the characters of the bee chars, the list of solutions
solns, and a goal number of points to reach gp, formulate full words via any method possible using
only chars, and check if they are solutions by using solns.

While blatant errors may arise from having access to solns, we prevent them by treating it exclu-
sively as a “checker” of sorts, similar to how a human player may be unsure if a word is valid and try
to submit it regardless. If the reader requires further justification for this, consider a function g(ω)
such that

g(ω) =

{
1 if ω ∈ V

0 otherwise

We use solns exclusively to build such a function g from the set of all possible character combinations
C to the solution set V , which a user of Spelling Bee clearly has access to.

We begin with the most obvious, naive method of solving our puzzle.

4.1 Brute Force Method

The brute force method is the most obvious algorithm to implement. Our first iteration will ignore
the results found above (3.3), and simply cycle through all potential solution words, beginning with
length 4. Since we are given chars, we’ll exclusively cycle through all combinations of characters that
follow our definition of “potential solution words”, similar to a user of Spelling Bee. This will give
us a good benchmark for our four quantifiers, which will be (1) Average Length of Word Found, (2)
Average Number of Words Needed, (3) Average Points Earned Per Rank, and (4) Average Time Taken
to Reach Rank.

4.1.1 Brute Force Results

Running the most naive solving method possible on data.csv and solutions.csv gives us the Figure
11, below. As expected, the average submitted word length is 4, and the time needed to complete each
rank grows exponentially.

13

Figure 11: Unoptimized Brute Force Algorithm Results

Let’s attempt some basic optimization of the brute force method. Our first optimization will be
changing our word length priority to 6 > 5 > 7 > 8 > 4 > rest, as we found in 3.3 to be the supposed
optimal priority. Examining the results depicted in Figure 12, we see somewhat expected results. The
optimized BF has a strictly larger average word length due to prioritizing 4 later, which obviously gives
a lower average number of words needed. With the time to find a word using brute force increasing by
a factor of 7 for every increase in n, the Optimized BF takes slightly more time for high ranks than
the Naive BF. Interestingly, the average points earned grew very similarly, implying both have similar
margins when “crossing” a rank boundary.

Figure 12: Comparing Naive Brute Force and Optimized Brute Force

Of course, different priorities may lead to different results, but we would begin to overfit to our
small dataset. So, we’ll stick to the priority list we found in 3.3, to avoid finding the best model for
just our 14 Spelling Bees.

Regardless of optimization, any variation of brute forcing solutions to this puzzle are both uninter-
esting and inefficient, so we’ll move on to basic analysis of the algorithm.

14

4.1.2 Analysis of Brute Force

This method is trivially correct and terminating, due to the nature of attempting every possible valid
combination of characters (c0, ..., c6).

With the method finding every word of length n before moving on to the next highest priority
length, we examine the computational complexity of finding all solution words of length n. For any
Spelling Bee game instance (c0, ..., c6), we know all potential solution words will contain at least one
c0, and the rest of the letters may be any ci, 0 ≤ i ≤ 6. Using this, we find the number of potential
solution words of length n to be:

1× 7× ...× 7︸ ︷︷ ︸
n - 1

= 7n−1

Using the naive setup of “find all of length n, then restart and find all of length n + 1” (rather than

memoization or a lookup table), finding all potential solution words of length < α is thus
∑α−1

j=4 7j−1.
Let p = [p0, ..., p14] be our priority list, such that every word length n ∈ [4, 20) is uniquely contained

in p, and pi is of strictly greater priority than pi+1 for any i. Then, fix i ∈ [0, 14] such that by finding
all words of length p0, ..., pi−1, we will reach 70% of potential points at some word of length pi. Using
this, we find the number of solutions requiring calculation, K, follows the inequalities below:

i−1∑
ℓ=0

7pℓ−1 < K ≤
i∑

j=0

7pj−1

Using basic algebra, we find the interval that K lies in to be of size 7pi−1.
Thus, we can formulate a computational complexity for our optimized brute force algorithm. Let

p be an arbitrary priority list, and define N as the index of p such that we will achieve 70% point
coverage during some word of length p[N]. Then, using Big-Oh Notation, we’ll find the Big-Oh number
of iterations of the optimized brute force algorithm, OBF, as follows, with the eventual goal being a
formulated computational complexity:

OBF ≤ O(

N∑
j=0

7pj−1), pj ≤ 20

≤ O(

N∑
j=0

719)

= O(N(719))

= O(N), N ≤ 14

= O(1)

This result is interesting, although not unexpected. It effectively depicts the problem of using Big-Oh
notation on algorithms with upper-bounded growth factors, which was one of the reasons I began this
project to begin with. With the maximum number of calculations known to be

∑18
i=3 7

i, there is no
growth under Big-Oh notation, as the worst case is known. To find a more effective answer, we’ll
examine the expected runtime under unknown probability distribution P.

Begin with the same setup as above, that being defining p and N the same. Then, our expected

15

runtime is

= O(E[
N∑
j=0

7pj−1])

= O(

E[N]∑
j=0

E[7pj−1])

Let pk be the maximum priority s.t. k ∈ [0,E[N]]

≤ O(

E[N]∑
j=0

E[7pk−1])

= O(E[N]E[7pk−1])

= O(E[N]7E[pk]−1)

With the overall distribution of the Spelling Bee game unknown, this is as far as we can simplify.
Despite that, this formula is much more informative- we now see that the expected computational
complexity is linearly dependent on how far through our priority list we have to go to achieve 70%
coverage, as well as exponentially dependent on the maximum length priority up to and including that
depth. Intuitively, we see the exponential behavior expected of a brute force algorithm such as this.

For completions’ sake, we’ll explicitly state here that we assume the following computations are
constant time: individual combinations of the characters regardless of length, all verification of pos-
sible solutions, and all python functions regarding sets. As long as we stay consistent in our use of
these throughout all methods, these are safe assumptions. Thus, our overall expected complexity of
Optimized Brute Force is:

O(E[N]7E[pk]−1) (4)

For our second obvious method of solving, we’ll focus less on analysis, as the creation and use of
English dictionaries in python adds a high level of uncertainty. Instead, we’ll focus on the concrete
plots.

4.2 Dictionary Filtering

Our alternative obvious method of solving is a common method of finding specific words, and one I
utilized in a class on Natural Language Processing, as well as above. Still a relatively simple algorithm,
but can be extremely fast, depending on what precomputations we allow.

The obvious problem is that this does not technically provide a guaranteed win, since it’s reliant
on your chosen dictionary containing enough of the solution words to get ≥ 70% of the total potential
points. While this technically makes this algorithm incorrect, the chances of there being a statistically
significant number of non-obscure English words missing from all available dictionaries is incredibly
minor. For reference, the first link I saw when Googling “English Dictionary Text File” was a link to
a public github repo containing a words.txt file with 497K unique “English” words.

4.2.1 Dictionary Filtering Results

We begin with basic dictionary filtering: taking every word in our corpus, we eliminate words that
cannot be solutions to the given Spelling Bee, and submit every word that remains at the end. We’ll
standardize our five levels of precomputing as follows, with each level adding a new level of filtration
done before running the algorithm:

(0) Do nothing prior to running the algorithm

(1) Precompute dictionary, filter nothing

(2) Filter all strings containing non-ascii characters

(3) Filter all strings containing characters not in the given Spelling Bee instance

(4) Filter all strings not containing the required character

16

https://github.com/dwyl/english-words
https://github.com/dwyl/english-words

Each level of precomputation after (1) filters the dictionary given to our algorithm further, until finally
at precomputation level (4) the algorithm just has to check the length of words in the given dictionary.
Obviously, for a genuine solving algorithm, the best precomputation possible would be restricted to
level (2), but our goal is to examine the difference in performance for each of these levels.

With each level of precomputation completing the same steps, using the same methods, we expect
all metrics but time to be approximately the same, excepting for possible randomness from using sets.
Examining our results in Figure 13 below, we see those exact results. Obviously, taking more of the
filtering steps off of the program decreases the time necessary to complete the filtration, giving us
better running time for higher levels of precomputing, with the largest decrease being simply giving
our algorithm the dictionary.

Figure 13: Naive Dictionary Filtering Results

Comparing our results to Figure 12 above, we see the benefits of dictionary filtering: the average
time to solve our Spelling Bees is significantly less at higher ranks, even restricting ourself to the lowest
level of precomputation. Along with this, the average word length is higher than the naive brute force
method, due to the average word length of our dictionary being higher.

The primary drawback of the filtering method are the computational complexity dependent only on
how filtered the dictionary is before running the algorithm. This gives the dictionary filtering method
significantly higher runtime for lower ranks than the brute force methods above. The secondary
drawback is what we mentioned above- we’re dependent on an outside source providing a robust
enough dictionary that we can solve any given Spelling Bee. While this may be true for our purposes,
it’s still an unsatisfying result.

The flaws of dictionary filtering are not due to lack of optimization, but rather the premise of the
solving method itself. With that in mind, we will skip any attempt at optimization and move on.

4.3 Leaving the Spelling Bee Behind

Despite the length of analysis, solving the Spelling Bee itself isn’t actually very difficult. Any Unix
machine can use /usr/share/dict/words and filter words similarly to above, which gives an extremely
low runtime with a reasonable amount of precomputing, and is as close to guaranteeing all of the
solution words are in a dictionary as possible. The single line regular expression below can find all
solutions in any dictionary:

^[c_1c_2c_3c_4c_5c_6]*c_0[c_1c_2c_3c_4c_5c_6]*$

and in the most extended case, you can both guarantee success and have a low expected runtime by
using a massive dictionary textfile then cleaning up any missing points with a brute-force approach,
focusing on lower-length words.

17

A quick Google of “NYT Spelling Bee Algorithms” gives a litany of approaches, but every one I
saw was dependent on dictionaries and lists of English words. Despite multiple people going so far
as to use bitvectors and lower-level programming languages to reduce runtime, every method I saw
shared that one flaw. Looking to rectify that, we’ll move to the next section to examine the possibility
of finding a polynomial-time algorithm that can solve the generalized Spelling Bee, with no reliance
on dictionaries or outside resources.

5 Generalization of the Problem

The previous section was somewhat unsatisfying. Not only did the most time-efficient methods rely on
using outside resources to supply dictionaries to filter from, but we’re still unable to provably guarantee
our algorithms terminate. In this section, we generalize the problem to intentionally eliminate distri-
butions of any parameters, preventing reliance on dictionaries, and attempt to find a polynomial-time
algorithm to solve the generalization.

At it’s most general, our Spelling Bee puzzle can be described as follows:

Inputs: A an arbitrary set s.t. |A| = 25

c0 ∈ A

{c1, ..., c6} ⊂ A

V ⊆
19⋃
i=4

{c0, ..., c6}i (restricted to only containment operation)

f :

19⋃
i=4

{c0, ..., c6} → Z+ defined as f(ω) =

1 if len(ω) = 4

len(ω) + 7 if len(ω) > 4 and ∀i ∈ [0, 6], ci ∈ ω

len(ω) otherwise

k ∈ Z+ = round(0.7 ·
∑
v∈V

f(v))

∃ω ∈ V s.t. c0, ..., c6 ∈ ω

Output: G ⊆ V s.t.
∑
ω∈G

f(ω) ≥ k and ∀ω ∈ G, c0 ∈ ω

At first glance, this problem looks nearly impossible to reduce to polynomial runtime. With V in
principle being up to cardinality 719, we cannot afford to enumerate all of V , and without any idea
of expected size of any v ∈ V , we cannot reduce the problem to a smaller size. We’ll now attempt to
determine if this problem actually is impossible to solve in polynomial time, and if so prove it.

Our first observation is that the scoring function f(ω) relies only on (1) the length of ω, and (2)
whether or not ω contains all of c0, c1, ..., c6. The insight we gain here is that, since we only care about
reaching threshold k, and not finding a maximum value G, we don’t need to attempt many different
structural patterns, but rather a “small” family of candidate values.

First, observe that since len(ω) ∈ {4, ..., 19}, we only have 23 possible values of f(ω). If ω has length
4, f(ω) = 1, if ω has length ≥ 5, and does not contain all of {c0, ..., c6}, then f(ω) = len(ω) ∈ {5, ..., 19},
and if ω has length ≥ 7 and does contain all of {c0, ..., c6}, then f(ω) = len(ω) + 7 ∈ {14, ..., 26}. So,
the possible values of f(ω) are {1}∪ {5, 6, ..., 19}∪ {14, 15, ..., 26} = {1, 5, 6, ..., 26}, which has 23 total
possible values.

Expanding on this idea, we’ll categorize any potential ω ∈? V as follows: ω is type (i, 0) for each
i ∈ {4, ..., 19} if it does not contain all seven c0, ..., c6, and ω is type (i, 1) for each i ∈ {7, 8, ..., 19} if it
does contain all seven c0, ..., c6. Finding all unique types is simple: (4, 0), ..., (19, 0), (7, 1), ..., (19, 1).
In total, there are 16+13 = 29 total types. Now, we note that some types can be paired by their f(ω)
values, for example any ω of types (14, 0) and (7, 1) both give value 14. In total, there are 6 pairs of
this type, which, if we redefine these matching pairs as being the same, gives us a nicely matching 23
total unique types.

18

Now, observe that the fact that we never need more than ⌈ k
fτ
⌉ = ⌈ 0.7·

∑
v∈V f(v)

fτ
⌉ of any type τ to

achieve success, since

⌈
0.7

∑
v∈V f(v)

fτ
⌉fτ ≥ 0.7

∑
v∈V

f(v) = k

And we have our result, which is this problem being exponential in size. Since the number of
subsets that “solve” the problem are dependent on the size of an exponential-size set, we need to
complete an exponential number of computations to guarantee success.

19

	Introduction
	From Online Game to Programming
	Game Explanation and Formalizing
	Transferring the Game to Code

	Data Analysis
	Building a Dictionary of Spelling Bee Words
	Distribution of Potential Solution Points
	Attempting to Filter Potential Solutions (unhelpful results)
	Creating Bees as Sam Ezersky Intended

	Summary of Analysis and Consequences

	Methods of Solving the Puzzle, and Problems Therein
	Brute Force Method
	Brute Force Results
	Analysis of Brute Force

	Dictionary Filtering
	Dictionary Filtering Results

	Leaving the Spelling Bee Behind

	Generalization of the Problem

